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An economical model of brain networks

Brains make adaptive value at some physical cost

— Adaptive value: perceptions, cognitions, behaviours that help the organism survive
in a changing, competitive environment

— Physical cost: volume, wiring and metabolic costs of nervous systems

In brain networks, the topological properties that add the most adaptive
value are often the most costly

— Long distance connections needed for integrative processing

— Central hubs that mediate a lot of inter-modular connections

Like profitable businesses, brain networks negotiate an economic trade-
off between adding value and controlling production costs



How did we start thinking about brain networks?

Mayo, Meynert Ramény Cajal
(1827, 1870) (1890)



Explosion of high quality neuroimaging data now makes
connectomes dauntingly accessible

About 100,000,000,000 neurons in the
human brain (100 billion)

About 100,000 synapses per neuron

1 quadrillion cellular connections (101°)
in human brain connectome

1000s of structural and signalling
proteins per synaptic connection

Sporns, Tononi & Kotter (2005) PLoS Comp Biol



Graph theory powerfully simplifies the topology of complex

systems
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Topology: the study of properties that are preserved under continuous deformation of objects




The small world of the worm’s brain SUAL

Caenorhabditis elegans

e Small-world

* High clustering or cliquishness of connections
between neighboring nodes

» Short path length or high efficiency of
communication between any pair of nodes

Anatomy (277 neurons, 7000 synapses)
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Watts & Strogatz (1998) Nature; Latora & Marchiori (2001) Phys Rev Lett

Regular Smali-world

Increasing randomness



Vertes et al (2011) YouTube
(search on neuro tweets)




Structural Data

From neuroimaging to brain graphs

Functional Data
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White Matter fMRI
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Binary Matrix

Association Matrix

sMRI

Estimate an association matrix from
the data

— What are the nodes?

— What metric of connectivity?
Generate an adjacency matrix from the
association matrix

— What are the edges?
Measure topological properties of each
graph
Make comparisons between graphs

Brain graphs are statistical models entailing assumptions and trade-offs which influence parameter values

Brain graph parameters make sense relativistically, not absolutely; comparison between graphs is not trivial

Bassett & Bullmore (2010) Curr Op Neurol; Bullmore & Bassett (2011) Annu Rev Clin Psychol




Many network properties are conserved across many scales and kinds
and species of brain graphs

Cellular functional netweork

Small worldness
¢ high clustering

e short path length or high efficiency

Cost-efficiency

¢ high efficiency of information transfer for relatively low
connection cost

Hub nodes
® fat-tailed degree distributions
Modularity

® nodes are more densely connected to other nodes in the
same module than to nodes in other modules

Whaole-brain structural network

Bullmore & Sporns (2009) Nat Rev Neurosci

Sporns et al (2007) PLoS ONE; Yu et al (2008) Cereb Cortex; Meunier et al (2010) Front Neurosci



Human brain graphs and other information processing networks are
hierarchically modular
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Nodes in the same module are often, but not always, anatomical as well as topological neighbours: so intra-modular
edges will be shorter distance than inter-modular edges

Brain graphs typically have modules within modules

Meunier et al (2010) Front Neurosci; Bassett et al (2010) PLoS Comp Biol; Chen et al (2008) Cereb Cortex




What'’s special and what’s universal about human brains
compared to other information networks?

Utilities

Basic Materials

Consumer,

non-clinical
-

e

Healthcare

Human Brain Network Economic Network Social Network
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Green = Market = ” Vertes et al (2011) Front Sys Neurosci



“Back to anatomy”
Counting the material and metabolic costs of brain networks

Cajal’s economical principle:

“We realized that all of the various
conformations of the neuron and its various
components are simply morphological
adaptations governed by laws of
conservation for time, space, and material.”

Increasing awareness also of the metabolic
or energy costs of the nervous system and
the biological drive to control metabolic as
well as material costs of brains

Van Essen (1997) Nature
Niven & Laughlin (2008) J Exp Biol
Garcia-Lopez (2010) Front Neuroanatomy




Brain networks are economically wired but
do not strictly minimise wiring cost
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Trade-offs between connection distance and
topology in human brain networks
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Cost-efficiency and its heritability in human brain networks
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If brain networks had been selected by
competitive criteria of minimising cost and
maximising efficiency we might predict that
cost-efficiency is heritable

Trade-off between topological efficiency and
“connection cost” (Euclidean distance
between functionally connected regions) was
measured in 16 MZ and 13 DZ twin pairs

Global cost-efficiency was heritable ~0.6 and
nodal cost-efficiency was heritable ~0.8 in
symmetrical cortical regions, including DMN
components

Fornito et al (2011) J Neurosci



Expensive, long-range integrative connections may be “worth it”
for extra cognitive capacity

correlation coefficients of normalized path length of each individual node with 1Q

e Greater efficiency (or shorter path length)
of human brain networks is correlated with
fgg‘ higher IQ
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Van den Heuvel et al (2009) J Neurosci; Li et al (2009) PLoS Comp
Biol; Bassett et al (2010) PLos Comp Biol,
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predicts integrative networks will be
required for conscious, effortful
processing

frontal

Dehaene et al (1998) Proc Natl Acad Sci
Baars (1993) A cognitive theory of consciousness



Working memory load “breaks modularity” and drives workspace
configuration of functional brain networks

Modules

Clustering

Long-distance
edges

Inter-modular
edges
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Changes in cognitive load are associated with rapid reconfiguration
of network topology and connection distance
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Cartoon interpretation of economical small-world architecture in
terms of cognitive processes

Integrated processes
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Normal brain development is associated with changes in network
efficiency and connection cost
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Functional networks and connector hubs are less
parsimoniously connected in schizophrenia
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Conclusions

J Brains make adaptive value at some physical cost
J In brain networks, the topological properties that add the most adaptive value are often the most costly

J Like profitable businesses, brain networks negotiate an economic trade-off between adding value and controlling
production costs

*  Brain networks have complex topology embedded in anatomical space

— Long distance connections, often between modules, are important for efficiency of information transfer and formation of
workspaces

— Topological properties such as efficiency and robustness have adaptive value in terms of supporting effortful cognitive processes
and resilience to adverse perturbation

— Brains can rapidly and slowly reconfigure themselves in terms of connection distance and topology

— Trade-offs between wiring cost and topological efficiency have been demonstrated directly in C elegans and, less directly, in
humans

— It is plausible that an economical trade-off between topological and spatial properties is an important criterion for developmental
and evolutionary selection of brain networks

— Brain disorders impacting on cognitive function have abnormal network properties, spatially and topologically, suggesting that
neurological and psychiatric symptoms arise especially when the more costly components of networks are lesioned or develop
abnormally

e An economical model of brain network organization is not yet refuted and could benefit from
further testing
- More precise characterization of wiring cost in human networks
— More studies of brain networks in experimentally tractable animal models
— More computational modeling of network selection by economic criteria
— More comprehensive and larger-sample mapping of network abnormalities across a range of brain disorders
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